## Характеристика состава и свойств ротовой жидкости у детей младшего школьного возраста

Кафедра стоматологии де сого возраст Профессор, д.м.н. Терехова Ассистент Чернявская Н.Д.

27 января 2021 г.

Ротовая жидкость представляет собой сложную биологическую жидкость, в состав которой входят различные органические и неорганические соединения. Минерализующая функция ротовой жидкости осуществляется основными структурообразующими элементами гидроксиапатитов эмали – кальцием и фосфатами. Поддержание равновесия между процессами деминерализации и реминерализации зависит от ионной концентрации кальция, фосфата и магния в ротовой жидкости, которая, в свою очередь, щелочной фосфатазы. Качество уровня зависит OT длительность постэруптивной минерализации эмали зубов будет определятся минерализующей способностью слюны, скоростью, вязкостью ротовой жидкости и уровнем водородного показателя.

**Цель исследования:** изучить состав и биофизические свойства ротовой жидкости у детей с различной вероятностью развития кариеса.

## Материал и методы исследования

Изучен состав и физико-химические свойства ротовой жидкости у 25 детей, которые распределены на три группы:

- первая группа дети (n=9) с низкой вероятностью развития кариеса;
- вторая группа дети (n=7) со средней вероятностью развития кариеса;
- третья группа —дети (n=9) с высокой вероятностью развития кариеса.

## Материал и методы исследования

Определение содержания неорганического кальция, фосфата, магния и щелочной фосфотазы проводилось колорометрическим методом.

Уровень водородного показателя определяли ионометром.

Скорость слюноотделения, вязкость и минерализующий потенциал слюны определяли по методикам Т.Л.Рединовой и А.Р Поздеева (1994).

Статистический анализ проводился с использованием программы IBM SPSS Statistics v.26 (разработчик - IBM Corporation)

Таблица 1. – Содержание кальция, фосфора, щелочной фосфатазы и биофизические свойства ротовой жидкости детей с различной

вероятностью развития кариеса

|                                                       | •                    | Вероятность развития кариеса              |                                            |                                            |                                                                      |
|-------------------------------------------------------|----------------------|-------------------------------------------|--------------------------------------------|--------------------------------------------|----------------------------------------------------------------------|
| Показатель                                            | Единицы<br>измерения | Низкая вероятность развития кариеса (n=9) | Средняя вероятность развития кариеса (n=7) | Высокая вероятность развития кариеса (n=9) | Р                                                                    |
| Скорость саливации слюны, $ Me \ [Q_1 \hbox{-} Q_3] $ | мл/мин               | 0,5<br>[0,5 - 0,54]                       | 0,3<br>[0,25 - 0,54]                       | 0,3<br>[0,2 - 0,36]                        | p <sub>1</sub> - <sub>2,3</sub> =0,009*<br>p <sub>1-3</sub> = 0,007* |
| Вязкость ротовой жидкости, Me $[Q_1-Q_3]$             | отн.ед.              | 1,02<br>[1,02 - 1,02]                     | 1,02<br>[1,02 - 1,34]                      | 1,53<br>[1,3 - 1,84]                       | $p_{1^-2,3} = 0,003*$<br>$p_{1-3} = 0,002*$                          |
| Ph ротовой жидкости, Me $[Q_1-Q_3]$                   | отн.ед.              | 6,75<br>[6,75 - 7]                        | 6,5<br>[6,5 - 7]                           | 6,25<br>[6,25 - 6,5]                       | p <sub>1</sub> - <sub>2,3</sub> =0,002*<br>p <sub>1-3</sub> = 0,002* |
| Минерализующий потенциал слюны, Ме $[Q_1-Q_3]$        | Баллов               | 2<br>[2 - 2,3]                            | 1,7<br>[1,3 - 2]                           | 1<br>[1 - 1]                               | p <sub>1</sub> - <sub>2,3</sub> =0,003*<br>p <sub>1-3</sub> = 0,002* |
| Щелочная фосфатаза, Me $[Q_1-Q_3]$                    | МЕ/л                 | 17,7<br>[13,4 - 24,7]                     | 24,2<br>[18,5 - 30,45]                     | 18<br>[11,7 - 28]                          | p <sub>1</sub> - <sub>2,3</sub> =0,733                               |
| Mg,<br>M ± SD (95% ДИ)                                | ммоль/л              | $0,32 \pm 0,09 \\ (0,24 - 0,39)$          | $0.2 \pm 0.1 \\ (0.1 - 0.29)$              | $0.13 \pm 0.05 \\ (0.09 - 0.17)$           | $p_{1^-2,3} < 0.001*$ $p_{1^-2} = 0.017*$ $p_{1^-3} < 0.001*$        |
| Ca,<br>Me [Q <sub>1</sub> -Q <sub>3</sub> ]           | ммоль/л              | 0,25<br>[0,23 - 0,3]                      | 0,18<br>[0,16 - 0,21]                      | 0,17<br>[0,16 - 0,21]                      | $p_{1^-2,3} = 0.004*$ $p_{1-2} = 0.01*$ $p_{1-3} = 0.01*$            |
| Р,<br>M ± SD (95% ДИ)                                 | ммоль/л              | $4,52 \pm 1,48 \\ (3,32 - 5,73)$          | $3.5 \pm 0.81$<br>(2.69 – 4.3)             | $3,74 \pm 1,01$ $(2,92 - 4,56)$            | p <sub>1</sub> - <sub>2,3</sub> =0,193                               |

<sup>\*</sup> – различия показателей статистически значимы (р < 0,05)



## Результаты исследования

При сравнении скорости слюноотделения, вязкости, рН, минерализующего потенциала, содержания магния, кальция в слюне детей с различной вероятностью развития кариеса установлены статистически значимые различия (р=0,009, р = 0,003, p=0,002, p=0,003, p<0,001, p=0,004) соответственно, а содержание щелочной фосфатазы и фосфора у детей с различной вероятностью развития кариеса статистически значимо не отличалось (p = 0,733, p = 0,193) соответственно.

Таблица 2. – Результаты корреляционного анализа взаимосвязи показателей ротовой жидкости у детей

|                                            | Характеристики корреляционной связи |          |                                   |  |
|--------------------------------------------|-------------------------------------|----------|-----------------------------------|--|
| Показатели                                 | rxy / ρ                             | Р        | Теснота связи по шкале<br>Чеддока |  |
| Щелочная фосфатаза-МПС (r <sub>xy</sub> )  | 0,15                                | 0,476    | слабая                            |  |
| Скорость саливации – вязкость слюны (р)    | -0,59                               | 0,002*   | заметная                          |  |
| рН ротовой жидкости-скорость саливации (ρ) | 0,653                               | < 0,001* | заметная                          |  |
| МПС-вязкость слюны (ρ)                     | 0,467                               | 0,019*   | умеренная                         |  |
| рН ротовой жидкости-вязкость (ρ)           | -0,562                              | 0,003*   | заметная                          |  |
| МПС-скорость слюны (ρ)                     | 0,485                               | 0,014*   | умеренная                         |  |
| МПС- рН ротовой жидкости (ρ)               | 0,503                               | 0,01*    | заметная                          |  |
| Ca-P (r <sub>xy</sub> )                    | 0,278                               | 0,178    | слабая                            |  |
| Ca-Mg (ρ)                                  | 0,498                               | 0,011*   | умеренная                         |  |
| P-Mg (ρ)                                   | 0,363                               | 0,074    | умеренная                         |  |

<sup>\* –</sup> корреляционная связь статистически значима

Таким образом, результаты данного исследования свидетельствуют о различиях в содержании кальция, фосфора, магния, щелочной фосфатазы и свойствах ротовой жидкости у детей с различной вероятностью развития кариеса.