В.А. Филонюк*, Н.В. Дудчик**, В.В. Шевляков**

ТЕХНОЛОГИЯ РАЗРАБОТКИ МЕТОДИК КОНТРОЛЯ СОДЕРЖАНИЯ МИКРООРГАНИЗМОВ-ПРОДУЦЕНТОВ В ВОЗДУХЕ РАБОЧЕЙ ЗОНЫ

*Министерство здравоохранения Республики Беларусь, **республиканское унитарное предприятие «Научно-практический центр гигиены», г. Минск, Республика Беларусь

Введение

Быстро развивающиеся в мире и Республике Беларусь приоритетные направления промышленной и медицинской биотехнологии, относящиеся к высокотехнологичным V и VI укладам экономики, основаны на использовании различных видов и родов штаммов и серотипов селективных или мутантных (полученных методом генной инженерии) микроорганизмов в качестве пробиотиков, продуцентов белка (биомасса, кормовые добавки), химических продуктов (полисахариды, органические кислоты, спирты, биокатализ), биологически активных веществ (амилолитические, протеолитические, пектолитические, целлюлолитические и другие ферменты, гормоны, антибиотики, аминокислоты, витамины), лекарственных препаратов и диагностических систем, микробных препаратов для защиты и стимуляции роста сельскохозяйственных растений, очистки от загрязнений природных экосистем и др. [3].

Вместе с реальным положительным эффектом применения продуктов современной биотехнологии, при производстве и использовании микроорганизмов-продуцентов (далее – м.о.) и микробных препаратов на их основе (далее – МП) возможно загрязнение ими производственной среды, выделение в воздух рабочей зоны и атмосферы с вредным воздействием за счет их выраженных аллергических и иммунотоксических свойств на здоровье работников и населения [9]. Главным и наиболее эффективным направлением обеспечения безопасности производственной среды для работников является гигиеническая регламентация вредного микробного производственного фактора и с этих позиций актуальна разработка предельно допустимых концентраций в воздухе рабочей зоны (далее – ПДКврз) наиболее широко производимых и используемых штаммов м.о. и МП [9].

К настоящему времени разработана современная методология гигиенического регламентирования и нормирования в воздухе рабочей зоны, установлены ПДКврз 105 м.о. и 26 МП [7, 9]. Соблюдение разработанных гигиенических нормативов м.о. и МП на их основе возможно только при производственном объективном динамическом контроле с использованием аттестованными микробиологическими лабораториями валидированных методик выполнения измерения концентраций в воздухе рабочей зоны промышленных штаммов микроорганизмов как отдельных, так и в составе микробных препаратов (далее – МВИ).

Однако в мировой практике отсутствуют единые в соответствии с требованиями международной организации по стандартизации (стандарты ИСО) унифицированные подходы по метрологическим исследованиям и аттестации МВИ с определением операционных характеристик и валидности предварительно разрабатываемых количественных методов определения содержания м.о. в воздушной среде. Методические приемы и алгоритмы расчета операционных характеристик методов определения микроорганизмов существуют только для воды, пищевых продуктов и кормов для животных [5, 6].

Следовательно, для обеспечения соблюдения требований санитарного и метрологического законодательства и технических нормативных правовых актов Республики Беларусь в области безопасного обращения м.о. и МП на их основе актуальны и необходимы современные методические подходы по их контролю в воздухе рабочей зоны на

соответствие ПДКврз на основе обоснования технологии разработки стандартизованных и валидированных МВИ концентраций м.о. в воздушной среде.

Цель работы — обосновать современную технологию разработки аттестованных методик выполнения измерения концентраций промышленных штаммов микроорганизмов в воздухе рабочей зоны.

Материалы и методы

Первым этапом технологии разработки МВИ являлось обоснование единых принципов и подходов разработки методов количественного определения содержания в воздухе м.о. и МП. Они были основаны на экспериментальном моделировании микробного аэрозоля, на известных этапах и приемах микробиологической практики: отбор проб воздуха аспирационным способом с учетом отобранного объема, культивирование в оптимальных для изучаемых м.о. условиях на подобранных селективных питательных средах, подсчет сформированных колоний с характерными морфологическими признаками, идентификация микроорганизмов и колоний, расчет их количества на чашках с перерасчетом на 1 м³ воздуха [7, 9].

На созданной модели распыления в затравочных камерах объемом 250 л установки ингаляционного моделирования жидких аэрозолей отработаны режимы создания диапазона концентраций м.о. в замкнутом объеме с использованием различных типов распылителей, при разных скоростях подачи на эжекторы и на распылители потока воздуха, экспозициях распыления МП. Оптимизированы параметры аспирационного способа отбора проб воздуха (время и объем) при разных уровнях микробной нагрузки, проведена оптимизация состава питательных сред и режимов культивирования для каждого штамма м.о. с их последующей идентификацией. Полученный массив экспериментальных данных позволил выявить характер и закономерности роста м.о. в зависимости от концентрации в фиксированном объеме затравочной камеры. Установленные прямые зависимости между количеством выросших колоний на чашке и отобранным объемом воздуха в основном носили линейный характер, описывались регрессионными уравнениями с коэффициентами детерминации R^2 в диапазоне 0,93-0,96, что свидетельствует о высокой достоверности полученных результатов количественного определения концентраций м.о в воздухе [9].

Применение обоснованных методических подходов и принципов позволило определить в модельных экспериментах необходимые условия и требования по отбору проб воздуха на микробную обсемененность, установить прямые концентрационные зависимости, высокую достоверность и чувствительность количественного определения концентраций в воздухе аэрозолей как изолированных штаммов м.о. (хлебопекарные дрожжевые грибы штамма Saccharomyces cerevisiae Л153 (далее – S. cerevisiae Л153), так и ряда монокомпонентных и комбинированных МП по содержащимся в их составе м.о., на основании чего разработаны и утверждены инструментальные методы их количественного определения в воздухе рабочей зоны [9].

На последующем этапе для разработки МВИ требовалось проведение метрологических исследований по определению категорийных характеристик разработанных методов определения м.о. в воздухе, связанных с их специфичностью и селективностью.

Результаты и их обсуждение

Разработка аттестованных и валидированных МВИ концентраций микробного аэрозоля в воздухе рабочей зоны является достаточно сложной аналитической задачей, поскольку стандартизованные методические подходы к метрологической оценке методов определения в воздухе м.о. отсутствовали.

В связи с этим на последующем этапе исследований требовалось определить категорийные характеристики разработанных методов определения м.о. в воздухе. Для этого, используя общие принципы и требования метрологической оценки МВИ содержания микроорганизмов в воде, пищевых продуктах и кормах для животных (формулы расчета

операционных характеристик) [4-6], впервые разработаны технология метрологической оценки категорийных характеристик и валидности методов определения м.о. и МП в воздухе и алгоритм разработки аттестованной МВИ концентраций м.о. в воздухе рабочей зоны, наиболее подробно изложенные в инструкции по применению № 009-1015 [7].

Первоначальная технология метрологической оценки разработанных методов определения содержания клеток штаммов м.о. в воздухе и аттестации МВИ осуществлялась в соответствии с СТБ ИСО 5725 (ч. 2, 3, 6) [8] и была основана на анализе статистических данных результатов 20 серий измерений образцов проб воздуха рабочей зоны производства м.о. или МП с двукратным подсчетом двумя операторами на параллельных чашках общего количества колоний, характерных по культурально-морфологическим признакам для каждого штамма м.о., путем оценки прецизионности методики и неопределенности подсчета с определением показателей взвешенного совокупного относительного стандартного отклонения, стандартого отклонения и значения предела повторяемости, стандартного отклонения промежуточной прецизионности (внутрилабораторной воспроизводимости); расширенной неопределенности измерения данной методикой при выполнении в условиях лаборатории; оценки пропорциональности (линейности) методики, ее специфичности и селективности показателям чувствительности, специфичности, ПО частоте ложноположительных и ложноотрицательных результатов; эффективности, селективности и верхнему пределу линейности. Определение чувствительности, селективности метода, определения частоты ложноположительных и ложноотрицательных результатов проводилось для каждого штамма м.о., входящего в состав соответствующего МП [9].

На основании разработанной технологии метрологических исследований впервые были разработаны и аттестованы РУП «Белорусский государственный институт метрологии» МВИ в воздухе рабочей зоны концентраций клеток м.о., входящих в состав МП «Бетапротектин», «Стимул», «Профибакт^{ТМ}-Фито».

В последующем технология метрологических исследований была нами усовершенствована по принципиальным позициям с учетом требований новых стандартов ISO [2,10], обусловленных специфическими микробиологическими параметрами исследуемых образцов воздуха, т.к. распределение м.о. в воздухе рабочей зоны является относительно однородным.

В качестве примера приводим результаты метрологической оценки разработанной методики выполнения измерений концентраций клеток штамма S. cerevisiae Л153 в воздухе рабочей зоны, выполненной в соответствии с усовершенствованной технологией оценки категорийных характеристик. Она предусматривает моделирование 3 уровней контаминации воздуха клетками м.о. с учетом значения установленной ПДКврз в диапазоне 15-50, 51-200, 201-2000 КОЕ/м³, расчет операционных характеристик для каждого уровня измерений: прецизионности неопределенности показатели $(S_r,$ $S_{l(O)}$, подсчета, r, $r_{l(O)}$), пропорциональности (линейность), чувствительность, селективность, частота ложноположительных и ложноотрицательных значений, эффективность, с последующей аггравацией результатов как максимально полученных в целом для методики.

Оценка показателей прецизионности методики и неопределенности подсчета. Оценка взвешенного совокупного относительного стандартного отклонения (неопределенность подсчета по терминологии ISO 13843:2017 производилась в соответствии с п. А.1 данного стандарта [2]). Показатели прецизионности (повторяемость и промежуточная прецизионность с изменяющимся фактором «оператор») определялись в соответствии с СТБ ИСО 5725-(1-6)-2002 [8]. Для оценки прецизионности использовали результаты статистического анализа данных микробной обсемененности проб воздуха рабочей зоны биотехнологического производства *S. cerevisiae* Л153. Проведено p=15 измерений (n=2), выполненных с двумя изменяющимися факторами: время и оператор, рассчитаны значения оценок стандартного отклонения повторяемости (таблица 1).

Таблица 1. – Сопоставление исходных данных, абсолютные разности, квадраты разностей,

проверка по критерию Кохрена на выбросы, расчет повторяемости

i x _{in} x _{in} y _{in} = log ₁₀ (x _{in}) y _{in} = log ₁₀ (x _{in}) y _{in} - y _{in} y _{in} - y _{in} ² Уровень 1: 15-50 КОЕ/м³ 1 20 23 1,30 1,36 0,0607 0,0037 2 17 24 1,23 1,38 0,1498 0,0224 3 30 19 1,48 1,28 0,1984 0,0393 4 25 19 1,40 1,28 0,1192 0,0142 5 34 29 1,53 1,46 0,0691 0,0048 6 19 19 1,28 1,28 0,0000 0,0000 7 28 43 1,45 1,63 0,1863 0,0347 8 49 33 1,69 1,52 0,1717 0,0295 9 26 30 1,41 1,48 0,0621 0,0336 10 29 30 1,46 1,48 0,0147 0,0002 11									
1 20 23 1,30 1,36 0,0607 0,0037 2 17 24 1,23 1,38 0,1498 0,0224 3 30 19 1,48 1,28 0,1984 0,0393 4 25 19 1,40 1,28 0,1192 0,0142 5 34 29 1,53 1,46 0,0691 0,0048 6 19 19 1,28 1,28 0,0000 0,0000 7 28 43 1,45 1,63 0,1863 0,0347 8 49 33 1,69 1,52 0,1717 0,0295 9 26 30 1,41 1,48 0,0621 0,0039 10 29 30 1,46 1,48 0,0147 0,0002 11 34 26 1,53 1,41 0,1165 0,0136 12 42 44 1,62 1,64 0,0202 0,0004	C_r								
2 17 24 1,23 1,38 0,1498 0,0224 3 30 19 1,48 1,28 0,1984 0,0393 4 25 19 1,40 1,28 0,1192 0,0142 5 34 29 1,53 1,46 0,0691 0,0048 6 19 19 1,28 1,28 0,0000 0,0000 7 28 43 1,45 1,63 0,1863 0,0347 8 49 33 1,69 1,52 0,1717 0,0295 9 26 30 1,41 1,48 0,0621 0,0039 10 29 30 1,46 1,48 0,0147 0,0025 11 34 26 1,53 1,41 0,1165 0,0136 12 42 44 1,62 1,64 0,0202 0,0004 13 15 24 1,18 1,38 0,2041 0,0417									
3 30 19 1,48 1,28 0,1984 0,0393 4 25 19 1,40 1,28 0,1192 0,0142 5 34 29 1,53 1,46 0,0691 0,0048 6 19 19 1,28 1,28 0,0000 0,0000 7 28 43 1,45 1,63 0,1863 0,0347 8 49 33 1,69 1,52 0,1717 0,0295 9 26 30 1,41 1,48 0,0621 0,0039 10 29 30 1,46 1,48 0,0147 0,0002 11 34 26 1,53 1,41 0,1165 0,0136 12 42 44 1,62 1,64 0,0202 0,0004 13 15 24 1,18 1,38 0,2041 0,0417 14 41 40 1,61 1,60 0,0107 0,0001 <td></td>									
4 25 19 1,40 1,28 0,1192 0,0142 5 34 29 1,53 1,46 0,0691 0,0048 6 19 19 1,28 1,28 0,0000 0,0000 7 28 43 1,45 1,63 0,1863 0,0347 8 49 33 1,69 1,52 0,1717 0,0295 9 26 30 1,41 1,48 0,0621 0,0039 10 29 30 1,46 1,48 0,0147 0,0002 11 34 26 1,53 1,41 0,1165 0,0136 12 42 44 1,62 1,64 0,0202 0,0004 13 15 24 1,18 1,38 0,2041 0,0417 14 41 40 1,61 1,60 0,0107 0,0001 15 33 35 1,52 1,54 0,0256 0,0007 <td></td>									
5 34 29 1,53 1,46 0,0691 0,0048 6 19 19 1,28 1,28 0,0000 0,0000 7 28 43 1,45 1,63 0,1863 0,0347 8 49 33 1,69 1,52 0,1717 0,0295 9 26 30 1,41 1,48 0,0621 0,0039 10 29 30 1,46 1,48 0,0147 0,0002 11 34 26 1,53 1,41 0,1165 0,0136 12 42 44 1,62 1,64 0,0202 0,0004 13 15 24 1,18 1,38 0,2041 0,0417 14 41 40 1,61 1,60 0,0107 0,0001 15 33 35 1,52 1,54 0,0256 0,0007 Ypobeth 2: 51-200 KOE/m³ 1 1010 130 2,00 2,11 <t< td=""><td></td></t<>									
6 19 19 1,28 1,28 0,0000 0,0000 7 28 43 1,45 1,63 0,1863 0,0347 8 49 33 1,69 1,52 0,1717 0,0295 9 26 30 1,41 1,48 0,0621 0,0039 10 29 30 1,46 1,48 0,0147 0,0002 11 34 26 1,53 1,41 0,1165 0,0136 12 42 44 1,62 1,64 0,0202 0,0004 13 15 24 1,18 1,38 0,2041 0,0417 14 41 40 1,61 1,60 0,0107 0,0001 15 33 35 1,52 1,54 0,0256 0,0007 Уровень 2: 51-200 КОЕ/м³ 1 101 130 2,00 2,11 0,0935 0,0087 4 190 170 2,28									
7 28 43 1,45 1,63 0,1863 0,0347 8 49 33 1,69 1,52 0,1717 0,0295 9 26 30 1,41 1,48 0,0621 0,0039 10 29 30 1,46 1,48 0,0147 0,0002 11 34 26 1,53 1,41 0,1165 0,0136 12 42 44 1,62 1,64 0,0202 0,0004 13 15 24 1,18 1,38 0,2041 0,0417 14 41 40 1,61 1,60 0,0107 0,0001 15 33 35 1,52 1,54 0,0256 0,0007 Ypoberhs 2: 51-200 KOE/m³ 1 101 130 2,00 2,11 0,110 0,012 2 150 153 2,18 2,18 0,0086 0,0001 3 160 129 2,20 2,11									
8 49 33 1,69 1,52 0,1717 0,0295 9 26 30 1,41 1,48 0,0621 0,0039 10 29 30 1,46 1,48 0,0147 0,0002 11 34 26 1,53 1,41 0,1165 0,0136 12 42 44 1,62 1,64 0,0202 0,0004 13 15 24 1,18 1,38 0,2041 0,0417 14 41 40 1,61 1,60 0,0107 0,0001 15 33 35 1,52 1,54 0,0256 0,0007 Уровень 2: 51-200 КОЕ/м³ 1 101 130 2,00 2,11 0,110 0,012 2 150 153 2,18 2,18 0,0086 0,0001 3 160 129 2,20 2,11 0,0935 0,0087 4 190 170 2,28 <td></td>									
9 26 30 1,41 1,48 0,0621 0,0039 10 29 30 1,46 1,48 0,0147 0,0002 11 34 26 1,53 1,41 0,1165 0,0136 12 42 44 1,62 1,64 0,0202 0,0004 13 15 24 1,18 1,38 0,2041 0,0417 14 41 40 1,61 1,60 0,0107 0,0001 15 33 35 1,52 1,54 0,0256 0,0007 Уровень 2: 51-200 КОЕ/м³ 1 101 130 2,00 2,11 0,110 0,012 2 150 153 2,18 2,18 0,0086 0,0001 3 160 129 2,20 2,11 0,0935 0,0087 4 190 170 2,28 2,23 0,0483 0,0023 5 155 171 2,19 </td <td>0.100</td>	0.100								
10 29 30 1,46 1,48 0,0147 0,0002 11 34 26 1,53 1,41 0,1165 0,0136 12 42 44 1,62 1,64 0,0202 0,0004 13 15 24 1,18 1,38 0,2041 0,0417 14 41 40 1,61 1,60 0,0107 0,0001 15 33 35 1,52 1,54 0,0256 0,0007 Уровень 2: 51-200 КОЕ/м³ 1 101 130 2,00 2,11 0,110 0,012 2 150 153 2,18 2,18 0,0086 0,0001 3 160 129 2,20 2,11 0,0935 0,0087 4 190 170 2,28 2,23 0,0483 0,0023 5 155 171 2,19 2,23 0,0427 0,0018 6 162 119 2,21	0,189								
11 34 26 1,53 1,41 0,1165 0,0136 12 42 44 1,62 1,64 0,0202 0,0004 13 15 24 1,18 1,38 0,2041 0,0417 14 41 40 1,61 1,60 0,0107 0,0001 Уровень 2: 51-200 КОЕ/м³ 1 101 130 2,00 2,11 0,110 0,012 2 150 153 2,18 2,18 0,0086 0,0001 3 160 129 2,20 2,11 0,0935 0,0087 4 190 170 2,28 2,23 0,0483 0,0023 5 155 171 2,19 2,23 0,0427 0,0018 6 162 119 2,21 2,08 0,1340 0,0179 7 156 140 2,19 2,15 0,0470 0,0022 8 150 151 2,									
12 42 44 1,62 1,64 0,0202 0,0004 13 15 24 1,18 1,38 0,2041 0,0417 14 41 40 1,61 1,60 0,0107 0,0001 15 33 35 1,52 1,54 0,0256 0,0007 Уровень 2: 51-200 КОЕ/м³ 1 101 130 2,00 2,11 0,110 0,012 2 150 153 2,18 2,18 0,0086 0,0001 3 160 129 2,20 2,11 0,0935 0,0087 4 190 170 2,28 2,23 0,0483 0,0023 5 155 171 2,19 2,23 0,0427 0,0018 6 162 119 2,21 2,08 0,1340 0,0179 7 156 140 2,19 2,15 0,0470 0,0022 8 150 151 2,									
13 15 24 1,18 1,38 0,2041 0,0417 14 41 40 1,61 1,60 0,0107 0,0001 15 33 35 1,52 1,54 0,0256 0,0007 Уровень 2: 51-200 КОЕ/м³ 1 101 130 2,00 2,11 0,110 0,012 2 150 153 2,18 2,18 0,0086 0,0001 3 160 129 2,20 2,11 0,0935 0,0087 4 190 170 2,28 2,23 0,0483 0,0023 5 155 171 2,19 2,23 0,0427 0,0018 6 162 119 2,21 2,08 0,1340 0,0179 7 156 140 2,19 2,15 0,0470 0,0022 8 150 151 2,18 2,18 0,0029 0,0000 9 156 165 2									
14 41 40 1,61 1,60 0,0107 0,0001 15 33 35 1,52 1,54 0,0256 0,0007 Уровень 2: 51-200 КОЕ/м³ 1 101 130 2,00 2,11 0,110 0,012 2 150 153 2,18 2,18 0,0086 0,0001 3 160 129 2,20 2,11 0,0935 0,0087 4 190 170 2,28 2,23 0,0483 0,0023 5 155 171 2,19 2,23 0,0427 0,0018 6 162 119 2,21 2,08 0,1340 0,0179 7 156 140 2,19 2,15 0,0470 0,0022 8 150 151 2,18 2,18 0,0029 0,0000 9 156 165 2,19 2,22 0,0244 0,0006 10 133 131 <td< td=""><td></td></td<>									
15 33 35 1,52 1,54 0,0256 0,0007 Уровень 2: 51-200 КОЕ/м³ 1 101 130 2,00 2,11 0,110 0,012 2 150 153 2,18 2,18 0,0086 0,0001 3 160 129 2,20 2,11 0,0935 0,0087 4 190 170 2,28 2,23 0,0483 0,0023 5 155 171 2,19 2,23 0,0427 0,0018 6 162 119 2,21 2,08 0,1340 0,0179 7 156 140 2,19 2,15 0,0470 0,0022 8 150 151 2,18 2,18 0,0029 0,0000 9 156 165 2,19 2,22 0,0244 0,0006 10 133 131 2,12 2,12 0,0066 0,0000 </td <td></td>									
Уровень 2: 51-200 КОЕ/м³ 1 101 130 2,00 2,11 0,110 0,012 2 150 153 2,18 2,18 0,0086 0,0001 3 160 129 2,20 2,11 0,0935 0,0087 4 190 170 2,28 2,23 0,0483 0,0023 5 155 171 2,19 2,23 0,0427 0,0018 6 162 119 2,21 2,08 0,1340 0,0179 7 156 140 2,19 2,15 0,0470 0,0022 8 150 151 2,18 2,18 0,0029 0,0000 9 156 165 2,19 2,22 0,0244 0,0006 10 133 131 2,12 2,12 0,0066 0,0000 11 120 120 2,08 2,08 0,0000 0,0000 12 134 141									
1 101 130 2,00 2,11 0,110 0,012 2 150 153 2,18 2,18 0,0086 0,0001 3 160 129 2,20 2,11 0,0935 0,0087 4 190 170 2,28 2,23 0,0483 0,0023 5 155 171 2,19 2,23 0,0427 0,0018 6 162 119 2,21 2,08 0,1340 0,0179 7 156 140 2,19 2,15 0,0470 0,0022 8 150 151 2,18 2,18 0,0029 0,0000 9 156 165 2,19 2,22 0,0244 0,0006 10 133 131 2,12 2,12 0,0066 0,0000 11 120 120 2,08 2,08 0,000 0,0000 12 134 141 2,13 2,15 0,0221 0									
2 150 153 2,18 2,18 0,0086 0,0001 3 160 129 2,20 2,11 0,0935 0,0087 4 190 170 2,28 2,23 0,0483 0,0023 5 155 171 2,19 2,23 0,0427 0,0018 6 162 119 2,21 2,08 0,1340 0,0179 7 156 140 2,19 2,15 0,0470 0,0022 8 150 151 2,18 2,18 0,0029 0,0000 9 156 165 2,19 2,22 0,0244 0,0006 10 133 131 2,12 2,12 0,0066 0,0000 11 120 120 2,08 2,08 0,0000 0,0000 12 134 141 2,13 2,15 0,0221 0,0005 13 155 161 2,19 2,21 0,0165 <									
3 160 129 2,20 2,11 0,0935 0,0087 4 190 170 2,28 2,23 0,0483 0,0023 5 155 171 2,19 2,23 0,0427 0,0018 6 162 119 2,21 2,08 0,1340 0,0179 7 156 140 2,19 2,15 0,0470 0,0022 8 150 151 2,18 2,18 0,0029 0,0000 9 156 165 2,19 2,22 0,0244 0,0006 10 133 131 2,12 2,12 0,0066 0,0000 11 120 120 2,08 2,08 0,0000 0,0000 12 134 141 2,13 2,15 0,0221 0,0005 13 155 161 2,19 2,21 0,0165 0,0003 14 140 143 2,15 2,16 0,0092									
4 190 170 2,28 2,23 0,0483 0,0023 5 155 171 2,19 2,23 0,0427 0,0018 6 162 119 2,21 2,08 0,1340 0,0179 7 156 140 2,19 2,15 0,0470 0,0022 8 150 151 2,18 2,18 0,0029 0,0000 9 156 165 2,19 2,22 0,0244 0,0006 10 133 131 2,12 2,12 0,0066 0,0000 11 120 120 2,08 2,08 0,0000 0,0000 12 134 141 2,13 2,15 0,0221 0,0005 13 155 161 2,19 2,21 0,0165 0,0003 14 140 143 2,15 2,16 0,0092 0,0001 15 152 164 2,18 2,21 0,0330									
4 190 170 2,28 2,23 0,0483 0,0023 5 155 171 2,19 2,23 0,0427 0,0018 6 162 119 2,21 2,08 0,1340 0,0179 7 156 140 2,19 2,15 0,0470 0,0022 8 150 151 2,18 2,18 0,0029 0,0000 9 156 165 2,19 2,22 0,0244 0,0006 10 133 131 2,12 2,12 0,0066 0,0000 11 120 120 2,08 2,08 0,0000 0,0000 12 134 141 2,13 2,15 0,0221 0,0005 13 155 161 2,19 2,21 0,0165 0,0003 14 140 143 2,15 2,16 0,0092 0,0001 15 152 164 2,18 2,21 0,0330									
5 155 171 2,19 2,23 0,0427 0,0018 6 162 119 2,21 2,08 0,1340 0,0179 7 156 140 2,19 2,15 0,0470 0,0022 8 150 151 2,18 2,18 0,0029 0,0000 9 156 165 2,19 2,22 0,0244 0,0006 10 133 131 2,12 2,12 0,0066 0,0000 11 120 120 2,08 2,08 0,0000 0,0000 12 134 141 2,13 2,15 0,0221 0,0005 13 155 161 2,19 2,21 0,0165 0,0003 14 140 143 2,15 2,16 0,0092 0,0001 15 152 164 2,18 2,21 0,0330 0,0011 Уровень 3: 201-2000 КОЕ/м³ 1 462 460									
6 162 119 2,21 2,08 0,1340 0,0179 7 156 140 2,19 2,15 0,0470 0,0022 8 150 151 2,18 2,18 0,0029 0,0000 9 156 165 2,19 2,22 0,0244 0,0006 10 133 131 2,12 2,12 0,0066 0,0000 11 120 120 2,08 2,08 0,0000 0,0000 12 134 141 2,13 2,15 0,0221 0,0005 13 155 161 2,19 2,21 0,0165 0,0003 14 140 143 2,15 2,16 0,0092 0,0001 15 152 164 2,18 2,21 0,0330 0,0011 Уровень 3: 201-2000 КОЕ/м³ 1 462 460 2,67 2,66 0,00302 0,00001 2 433 430 <td></td>									
7 156 140 2,19 2,15 0,0470 0,0022 8 150 151 2,18 2,18 0,0029 0,0000 9 156 165 2,19 2,22 0,0244 0,0006 10 133 131 2,12 2,12 0,0066 0,0000 11 120 120 2,08 2,08 0,0000 0,0000 12 134 141 2,13 2,15 0,0221 0,0005 13 155 161 2,19 2,21 0,0165 0,0003 14 140 143 2,15 2,16 0,0092 0,0001 15 152 164 2,18 2,21 0,0330 0,0011 Уровень 3: 201-2000 КОЕ/м³ 1 462 460 2,67 2,66 0,00188 0,000004 2 433 430 2,64 2,63 0,00377 0,00001 3 463 459<									
8 150 151 2,18 2,18 0,0029 0,0000 9 156 165 2,19 2,22 0,0244 0,0006 10 133 131 2,12 2,12 0,0066 0,0000 11 120 120 2,08 2,08 0,0000 0,0000 12 134 141 2,13 2,15 0,0221 0,0005 13 155 161 2,19 2,21 0,0165 0,0003 14 140 143 2,15 2,16 0,0092 0,0001 15 152 164 2,18 2,21 0,0330 0,0011 Уровень 3: 201-2000 КОЕ/м³ 1 462 460 2,67 2,66 0,00188 0,000004 2 433 430 2,64 2,63 0,00377 0,00001 3 463 459 2,67 2,66 0,00377 0,00001									
9 156 165 2,19 2,22 0,0244 0,0006 10 133 131 2,12 2,12 0,0066 0,0000 11 120 120 2,08 2,08 0,0000 0,0000 12 134 141 2,13 2,15 0,0221 0,0005 13 155 161 2,19 2,21 0,0165 0,0003 14 140 143 2,15 2,16 0,0092 0,0001 15 152 164 2,18 2,21 0,0330 0,0011 Уровень 3: 201-2000 КОЕ/м³ 1 462 460 2,67 2,66 0,00188 0,000004 2 433 430 2,64 2,63 0,00302 0,00001 3 463 459 2,67 2,66 0,00377 0,00001	0,252								
10 133 131 2,12 2,12 0,0066 0,0000 11 120 120 2,08 2,08 0,0000 0,0000 12 134 141 2,13 2,15 0,0221 0,0005 13 155 161 2,19 2,21 0,0165 0,0003 14 140 143 2,15 2,16 0,0092 0,0001 15 152 164 2,18 2,21 0,0330 0,0011 Уровень 3: 201-2000 КОЕ/м³ 1 462 460 2,67 2,66 0,00188 0,000004 2 433 430 2,64 2,63 0,00302 0,00001 3 463 459 2,67 2,66 0,00377 0,00001									
11 120 120 2,08 2,08 0,0000 0,0000 12 134 141 2,13 2,15 0,0221 0,0005 13 155 161 2,19 2,21 0,0165 0,0003 14 140 143 2,15 2,16 0,0092 0,0001 15 152 164 2,18 2,21 0,0330 0,0011 Уровень 3: 201-2000 КОЕ/м³ 1 462 460 2,67 2,66 0,00188 0,000004 2 433 430 2,64 2,63 0,00302 0,00001 3 463 459 2,67 2,66 0,00377 0,00001									
12 134 141 2,13 2,15 0,0221 0,0005 13 155 161 2,19 2,21 0,0165 0,0003 14 140 143 2,15 2,16 0,0092 0,0001 15 152 164 2,18 2,21 0,0330 0,0011 Уровень 3: 201-2000 КОЕ/м³ 1 462 460 2,67 2,66 0,00188 0,000004 2 433 430 2,64 2,63 0,00302 0,00001 3 463 459 2,67 2,66 0,00377 0,00001									
13 155 161 2,19 2,21 0,0165 0,0003 14 140 143 2,15 2,16 0,0092 0,0001 15 152 164 2,18 2,21 0,0330 0,0011 Уровень 3: 201-2000 КОЕ/м³ 1 462 460 2,67 2,66 0,00188 0,000004 2 433 430 2,64 2,63 0,00302 0,00001 3 463 459 2,67 2,66 0,00377 0,00001									
14 140 143 2,15 2,16 0,0092 0,0001 15 152 164 2,18 2,21 0,0330 0,0011 Уровень 3: 201-2000 КОЕ/м³ 1 462 460 2,67 2,66 0,00188 0,000004 2 433 430 2,64 2,63 0,00302 0,00001 3 463 459 2,67 2,66 0,00377 0,00001									
15 152 164 2,18 2,21 0,0330 0,0011 Уровень 3: 201-2000 КОЕ/м³ 1 462 460 2,67 2,66 0,00188 0,000004 2 433 430 2,64 2,63 0,00302 0,00001 3 463 459 2,67 2,66 0,00377 0,00001									
Уровень 3: 201-2000 КОЕ/м³ 1 462 460 2,67 2,66 0,00188 0,000004 2 433 430 2,64 2,63 0,00302 0,00001 3 463 459 2,67 2,66 0,00377 0,00001									
1 462 460 2,67 2,66 0,00188 0,000004 2 433 430 2,64 2,63 0,00302 0,00001 3 463 459 2,67 2,66 0,00377 0,00001									
2 433 430 2,64 2,63 0,00302 0,00001 3 463 459 2,67 2,66 0,00377 0,00001									
3 463 459 2,67 2,66 0,00377 0,00001									
4 482 483 2,68 2,68 0,00090 0,00000									
5 484 490 2,69 2,69 0,00535 0,00003									
6 481 495 2,68 2,70 0,0125 0,00016									
7 493 495 2,69 2,70 0,00176 0,00000									
8 521 520 2,72 2,72 0,00083 0,00000	0,205								
9 541 530 2,73 2,72 0,00892 0,00008									
10 460 500 2,66 2,70 0,0362 0,00131									
10 400 300 2,00 2,70 0,0302 0,00131 11 480 490 2,68 2,70 0,00895 0,00008									
11 480 470 2,08 2,70 0,00373 0,00008 12 565 530 2,75 2,72 0,0278 0,00077									

13	510	540	2,71	2,73	0,0248	0,00062
14	440	500	2,64	2,70	0,0555	0,00308
15	550	570	2,74	2,76	0,0155	0,00024

Проверку дисперсий на однородность выполняли по критерию Кохрена. Тест-

статистику Кохрена
$$C_r$$
 рассчитывали по формуле:
$$C_r = \frac{MAX[(y_{i1}-y_{i2})^2]}{\sum_{i=1}^p (y_{i1}-y_{i2})^2},$$
 (1)

где i – индекс серии измерений, i = 1,...p, (p = 15); y_{i1} , y_{i2} – результат измерений, преобразованный в $\log_{10} \text{ KOE/m}^3$ по формуле:

$$y_{i1} = log_{10}x_{i111}; y_{i2} = log_{10}x_{i121}$$
 (2)

 $y_{i1} = log_{10}x_{i111}; \ y_{i2} = log_{10}x_{i121}$ (2). Рассчитанное значение тест-статистики сравнивали с критическим значением Кохрена $C_r(\nu = 2; f = 15; P = 95\%) = 0,471.$ Так выполняется как ${
m C}_r < {
m C}_r$ (u = 2; f = 15; P = 95%), то статистические разбросы выбросы отсутствуют. Расчет стандартного отклонения повторяемости проводили по формуле:

$$S_r = \sqrt{\sum_{i=1}^p \frac{(y_{i1} - y_{i2})^2}{2 \times p}}$$
 (3).

Стандартное отклонение повторяемости, рассчитанное согласно формуле (3), составляет $S_r = 0.530 \log_{10} \text{ KOE/m}^3$.

Расчет стандартного отклонения $\sigma_{l(O)}$ промежуточной прецизионности проводили по формуле:

$$s_{I(O)} = \sqrt{\frac{1}{2} \left(\sum_{i=1}^{15} \frac{\left(\overline{y_a} - y_{ai}\right)^2}{n - 1} + \sum_{i=1}^{15} \frac{\left(\overline{y_b} - y_{bi}\right)^2}{n - 1} \right)},$$
(4)

где Y_n – результат измерений, преобразованный в $\log_{10} \mathrm{KOE/m}^3; i$ – индекс образца, i = ...n (n = 15); a, b - индекс фактора оператора, A или B.

$$\overline{y_a} = \sum_{i=1}^{15} y_a / n$$
 if $\overline{y_b} = \sum_{i=1}^{15} y_b / n$, (5)

Средние значения $\overline{y_a}$ и $\overline{y_b}$ рассчитывали по формулам: $\overline{y_a} = \sum_{i=1}^{15} y_a/n \quad \text{и} \quad \overline{y_b} = \sum_{i=1}^{15} y_b/n \,,$ где Y_n – результат измерений, преобразованный в \log_{10} КОЕ/м³; і – индекс образца, i = ...n (n = 15); a, b – индекс фактора оператора, A или B.

Рассчитанные значения оценок стандартного отклонения промежуточной прецизионности приведены в таблице 2.

Таблица 2. – Сопоставление исходных данных, расчет промежуточной прецизионности

1 400	ппца 2.	\sim						
i	Xia	XiB	$y_{ia} = log_{10}$	$y_{iB} = log_{10}$	(y _{ia} —y _{1 cp)}	$(y_{iB}-y_{2 cp})$	$(y_{ia}-y_{1 cp})^2$	$(y_{iB}-y_{2 cp})^2$
			(x_{ia})	(X_{iB})				
Уровень 1: 15-50 КОЕ/м ³								
1	20	23	1,30	1,36	0,145	0,087	0,0211	0,0076
2	17	24	1,23	1,38	0,216	0,069	0,0466	0,0047
3	30	19	1,48	1,28	0,031	0,170	0,0010	0,0289
4	25	19	1,40	1,28	0,048	0,170	0,0023	0,0289
5	34	29	1,53	1,46	0,085	0,014	0,0073	0,0002
6	19	19	1,28	1,28	0,167	0,170	0,0281	0,0289
7	28	43	1,45	1,63	0,001	0,185	0,0000	0,0341
8	49	33	1,69	1,52	0,244	0,070	0,0595	0,0049
9	26	30	1,41	1,48	0,031	0,028	0,0010	0,0008
10	29	30	1,46	1,48	0,016	0,028	0,0003	0,0008

11	34	26	1,53	1,41	0,085	0,034	0,0073	0,0011			
12	42	44	1,62	1,64	0,177	0,195	0,0313	0,0379			
13	15	24	1,18	1,38	0,270	0,069	0,0730	0,0047			
14	41	40	1,61	1,60	0,167	0,153	0,0277	0,0235			
15	33	35	1,52	1,54	0,072	0,095	0,0052	0,0091			
			$y_{1cp} = 1,456$	$y_{2cp} = 1,449$							
	Уровень 2: 51-200 КОЕ/м ³										
2	101	130	2,00	2,11	0,161	0,047	0,0258	0,00221			
3	150	153	2,18	2,18	0,011	0,024	0,000125	0,000566			
4	160	129	2,20	2,11	0,039	0,050	0,00154	0,00253			
5	190	170	2,28	2,23	0,114	0,070	0,0130	0,00484			
6	155	171	2,19	2,23	0,025	0,072	0,000645	0,00520			
7	162	119	2,21	2,08	0,045	0,085	0,00199	0,00729			
8	156	140	2,19	2,15	0,028	0,015	0,000795	0,000218			
9	150	151	2,18	2,18	0,011	0,018	0,000125	0,000327			
10	156	165	2,19	2,22	0,028	0,057	0,000795	0,00320			
11	133	131	2,12	2,12	0,041	0,044	0,00170	0,00190			
12	120	120	2,08	2,08	0,086	0,082	0,00735	0,00668			
13	134	141	2,13	2,15	0,038	0,012	0,00143	0,000136			
14	155	161	2,19	2,21	0,025	0,046	0,000645	0,00211			
15	140	143	2,15	2,16	0,019	0,006	0,000353	0,0000309			
			$y_{1cp} = 2,165$	$y_{2cp} = 2,161$							
				Уровень 3: 20	1-2000 KOE	\mathbb{Z}/\mathbf{M}^3					
1	464	460	2,67	2,66	0,025	0,035	0,000633	0,00121			
2	433	430	2,64	2,63	0,053	0,064	0,00284	0,00410			
3	463	459	2,67	2,66	0,024	0,036	0,000587	0,00127			
4	482	483	2,68	2,68	0,007	0,010	0,0000456	0,000183			
5	484	490	2,69	2,69	0,005	0,007	0,0000246	0,0000532			
6	481	495	2,68	2,70	0,008	0,003	0,0000587	0,0000083			
7	493	495	2,69	2,70	0,003	0,003	0,0000093	0,0000083			
8	521	520	2,72	2,72	0,027	0,019	0,000731	0,000343			
9	541	530	2,73	2,72	0,043	0,027	0,00188	0,000718			
10	460	500	2,66	2,70	0,027	0,001	0,000732	0,0000022			
11	480	490	2,68	2,70	0,009	0,007	0,0000733	0,0000532			
12	565	530	2,75	2,72	0,062	0,027	0,00387	0,000718			
13	510	540	2,71	2,73	0,018	0,035	0,000316	0,00122			
14	440	500	2,64	2,70	0,046	0,001	0,00215	0,0000022			
15	550	570	2,74	2,76	0,051	0,058	0,00256	0,00341			
			$y_{1cp} = 2,690$	$y_{2cp} = 2,697$							

Показатели прецизионности в виде стандартных отклонений устанавливаются для всего диапазона измерения МВИ как максимальное из полученных соответствующих оценок по трем уровням испытаний.

Значение предела повторяемости r, \log_{10} (КОЕ/м³), рассчитывали по формуле:

$$r = 2.8 \times 6_r \tag{6}$$

Тогда $r = 2.8 \times 0.924 \log_{10} \text{ KOE/m}^3 = 1.485 \log_{10} \text{ KOE/m}^3$.

Значение предела промежуточной прецизионности $r_{I(O)} \log_{10}$ (КОЕ/м³), рассчитывали по формуле:

$$r_{I(O)} = 2.8 \cdot \mathbf{6}_{I(O)} \tag{7}$$

Установленные показатели прецизионности в виде стандартных отклонений и пределов приведены в таблице 3.

Таблица 3. – Значения показателей прецизионности и максимальной расширенной

неопределенности при уровне доверия P = 0.95 для трех диапазонов измерения

		1
Уровень	Стандартное отклонение	Стандартное отклонение
испытания,	повторяемости σ_r , \log_{10}	промежуточной прецизионности
$\log_{10} (\text{KOE/m}^3)$	(KOE/M^3)	$\sigma_{I(O)}$, \log_{10} (KOE/M ³)
1,458	0,084	0,14
2,163	0,040	0,060
2,694	0,021	0,033

Оценку неопределенности измерения проводили по ISO 29201:2012 Расширенную неопределенность U с коэффициентом охвата 2 (приблизительно соответствующим доверительному интервалу 95 %) рассчитывали по формуле

$$U = 2\sigma_{l(O)},\tag{8}$$

где $\sigma_{l(O)}$ – стандартное отклонение промежуточной прецизионности, $\log_{10} \text{ KOE/m}^3$. Расширенная неопределенность для данной методики при выполнении в условиях лаборатории, рассчитанная по формуле (8), составила $0.7372 \log_{10} \text{KOE/m}^3$.

В соответствии с ISO 29201:2012 полученная оценка расширенной неопределенности относится к единичному измерению и может быть использована как максимальная оценка неопределенности для результата измерения, получаемого в соответствии с аттестуемой МВИ.

Установленные значения показателей прецизионности (повторяемости, промежуточной прецизионности, пределов повторяемости промежуточной прецизионности) и максимальной расширенной неопределенности при уровне доверия P = 0.95 приведены в таблице 4.

Оценка логарифмического отношения правдоподобия пропорциональности (линейности) определялась по формуле:

$$G_{n-1}^2 = 2 \left[c_1 \ln \frac{c_1}{p} + c_2 \ln \frac{c_2}{p} + \dots + c_n \ln \frac{c}{r} \right]$$
 (9)

 $G_{n-1}^2 = 2 \left[c_1 ln \frac{c_1}{\mathfrak{p}} + c_2 ln \frac{c_2}{\mathfrak{p}} + ... + c_n ln \frac{c_2}{\mathfrak{p}}, \right. \tag{9}$ где $c_1, c_2, ... c_n$ — количество колоний на чашках; R_1, R_2, R_n — объем проб воздуха. Значение G_5^2 , рассчитанное по формуле (9), составило 8,234.

Оценка пропорциональности (линейности) методики. Возможность методики при использовании с определенной матрицей показывать результаты, пропорциональные количеству анализируемых м.о. в исследуемом образце, определялась в соответствии с ISO 13843-2017 [2].

Таблица 4. – Значения показателей прецизионности (повторяемости, промежуточной прецизионности, пределов повторяемости и промежуточной прецизионности) максимальной расширенной неопределенности при уровне доверия P=0.95 для методики выполнения измерений

DDIIIOIIII					
Диапазон	Стандартное	Предел	Стандартное	Предел	Максимальная
измерения	отклонение	повторяе-	отклонение	промежуточной	расширенная
величина	повторяемости	мости r ,	промежуточной	прецизионности	неопределен-
КОЕ/м ³	σ_r , \log_{10}	\log_{10}	прецизионности	$r_{I(O)}$, \log_{10}	ность U ,
	(KOE/M^3)	(KOE/M^3)	$\sigma_{I(O)}$, \log_{10}	(KOE/M^3)	$\log_{10} (KOE/M^3)$
			(KOE/M^3)		
15-2000	0,084	0,24	0,14	0,38	0,28

Данные для оценки пропорциональности (линейности) получены по результатам анализа образцов рабочих проб воздуха рабочей зоны. Проведено 6 определений, выполненных с тремя параллельными подсчетами (n=3). При оценке пропорциональности (линейности) исключали результаты подсчета с низким числом колоний (уровень ниже чем 3 KOE/m^3). Результаты представлены в таблице 5.

Таблица 5. – Сопоставление исходных данных для оценки пропорциональности (линейности)

№ п/п	Объем	Парал	ілельные под	Сумма	Отношение		
	воздуха, дм ³		(3 чашки)		колоний на	Ci/R _i	
	^R i				чашках, Сі		
1	20	9	12	8	29	1,45	
2	30	23	24	20	67	2,23	
3	40	31	34	39	104	2,60	
4	60	77	65	62	202	3,37	
5	80	74	72	69	215	2,69	
6	160	90	84	83	257	1,61	
	Итого: 390		Итого: 876				

Критерием пропорциональности (линейности) является сравнение полученного значения G_5^2 с теоретическим значением χ^2 -распределения для f=5 и $\rho=0,1$ %, равным 20,515. Вычисленное значение не превышает значение χ^2 для пяти степеней свободы и $\rho=0,1$ %, что свидетельствует о том, что методика дает результаты, пропорциональные количеству анализируемых микроорганизмов в исследуемом образце.

Оценка показателей специфичности и селективности методики. Показатели специфичности и селективности определялись в соответствии с ISO 13843:2017, разделы 8, 9 [2]. Показатели специфичности и селективности методики оценивали при подсчете колоний, типичных по морфо-культуральным признакам (колонии светло-бежевые, размером 4-5 мм, поверхность гладкая, матовая, консистенция пастообразная, форма круглая, края ровные, внутренний узор отсутствует, профиль конусообразный).

Эту категорию оценивали как предположительно положительные (ПП) на основании первой оценки. Колонии с морфо-культуральными признаками, отличными от описанных, оценивали как предварительно отрицательные (ПО).

Затем проводили изучение с использованием микроскопирования методом раздавленной капли. Морфологические признаки: клетки имеют удлиненную, овальную, эллипсовидную, или шаровидную форму. Размеры клеток варьируют от 2,5 до 10 микрометров в поперечнике и от 4 до 20 мкм в длину. Колонии, вегетативные клетки которых отличались от описанных тинкториальных признаков, оценивали как истинно отрицательные результаты.

Изученные колонии подсчитывали и относили к следующим категориям: а — положительные колонии, которые содержат *S. cerevisiae* Л153; b — отрицательные колонии, которые содержат *S. cerevisiae* Л153; с — положительные колонии, которые не содержат *S. cerevisiae* Л153; d — отрицательные колонии, которые не содержат *S. cerevisiae* Л153.

На основании полученных результатов оценивали чувствительность, специфичность, частоту ложноположительных и ложноотрицательных результатов: чувствительность = a/(a+b), доля общего количества положительных результатов, правильно определенных при предположительном подсчете; специфичность = d/(c+d), доля общего количества отрицательных результатов, правильно определенных при предположительном подсчете; частота ложноположительных результатов = c/(a+c), доля наблюдаемых положительных результатов = b/(b+d), доля наблюдаемых отрицательных результатов, определенных ошибочно; эффективность E=

(a+d)/n, доля колоний, определенных правильно; селективность F = lg [(a+c)/n] - доля предполагаемых целевых колоний (предполагаемых положительных результатов) от общего количества колоний. Результаты представлены в таблице 6.

Таблица 6. – Сопоставление исходных данных для оценки показателей специфичности и селективности методики

Этапы	Положи-	Отрица-	a	b	c	d	n
	тельные	тельные					
1 этап	21 (a+c)	2 (b+d)	21	0	0	2	23
2 этап	21(a+b)	2 (d)					
Чувствительность		1,	000				
Специфичность		1,	000				
Частота ложноположительных результатов		0,	000				
Частота ложноотрицательных результатов		0,	000				
Селективность		-0,	,039				
Эффективность			1				
Верхний предел линейности	Не б	более 150 ко	олони	й на	чап	іку	•

В таблице 7 представлены полученные в результате эксперимента и анализа метрологические характеристики, показатели специфичности и селективности разработанной методики.

Следовательно, разработанная МВИ обладает высокой специфичностью, чувствительностью и селективностью. На этом основании МВИ в воздухе рабочей зоны концентраций клеток дрожжевых грибов штамма S. cerevisiae Л153 аттестована республиканским унитарным предприятием «Белорусский государственный институт метрологии» (свидетельство № 1105/2018 от 21.05.2018 г.).

Апробация МВИ при гигиенической оценке микробного загрязнения воздуха рабочей зоны в производстве хлебопекарных дрожжей показало ее объективность и валидность [1].

Таблица 7. – Метрологические характеристики и показатели специфичности и селективности МВИ концентраций клеток *S. cerevisiae* Л153 в в.р.з.

Метрологическая характеристика,	Полученная оценка
показатели специфичности и селективности	Полу теппал оцепка
показатели специфичности и селективности	
Взвешенное совокупное относительное стандартное	0,101
отклонение подсчета, S_z	
Стандартное отклонение повторяемости, S_r	$0,530 \log_{10} (\text{KOE/m}^3)$
Предел повторяемости, r	$1,485 \log_{10} (\text{KOE/m}^3)$
Стандартное отклонение промежуточной прецизионности, $S_{l(O)}$	$0,3686 \log_{10} (\text{KOE/M}^3)$
Предел промежуточной прецизионности, $rl_{(O)}$	$1,0321 \log_{10} (KOE/M^3)$
Расширенная неопределенность, <i>U</i> (k=2, P=95 %)	$0,7372 \log_{10} (KOE/M^3)$
Чувствительность	1,000
Специфичность	1,000
Частота ложноположительных результатов	0,000
Частота ложноотрицательных результатов	0,000
Селективность	-0,039
Эффективность	1,000
Верхний предел линейности	до 150 колоний на чашку

Приведенная современная технология разработки валидированной МВИ концентраций м.о. в воздушной среде отвечает требованиям стандартов ИСО, определяет

возможность использования МВИ аттестованными микробиологическими лабораториями центров гигиены и эпидемиологии и биотехнологических предприятий для производственного контроля содержания м.о. и МП на их основе в воздухе рабочей зоны на соответствие их гигиенических нормативов.

Заключение. Из представленных результатов выполненных исследований вытекают следующие выводы.

- 1. Впервые предложена технология разработки аттестованных методик выполнения измерений концентраций промышленных штаммов микроорганизмов и содержащих их микробных препаратов в воздухе рабочей зоны, включающая этап разработки методов количественного определения м.о. в воздушной среде и этап метрологических исследований на основе унифицированных методических подходов к определению операционных характеристик (стандартное отклонение повторяемости S, предел повторяемости, стандартное отклонение и предел промежуточной прецизионности, расширенная неопределенность) и валидности (взвешенное совокупное относительное стандартное специфичность, отклонение подсчета клеток. чувствительность, ложноположительных и ложноотрицательных результатов, селективность, эффективность, верхний предел линейности) разработанных методов, которые формализованы в инструкции по применению № 009-1015 [7], что обеспечивает рационализацию (по снижению объема работ и затрат) и стандартизацию метрологических исследований по разработке аттестованных МВИ.
- 2. С учетом современных требований новых стандартов ISO усовершенствованы по принципиальным позициям методические подходы к метрологической аттестации методов количественного определения в воздухе м.о. на примере хлебопекарных дрожжей *S. cerevisiae* Л153, предусматривающие моделирование 3 уровней контаминации воздуха м.о. в диапазоне от 15 до 2000 КОЕ/м³, включая значения 2 ПДК, расчет операционных характеристик для каждого уровня измерений и последующую аггравацию результатов как максимально полученных в целом, определение чувствительности, специфичности и эффективности МВИ.
- 3. Выполненные метрологические исследования позволили впервые разработать и аттестовать методики выполнения измерений в воздухе рабочей зоны концентраций клеток дрожжевых грибов штамма Saccharomyces cerevisiae Л153, клеток м.о., входящих в состав микробных препаратов «Бетапротектин», «Стимул», «Профибакт^{ТМ}-Фито», что определяет возможность объективно проводить производственный контроль содержания этих м.о. и МП в воздухе рабочей зоны на соответствие их ПДКврз аттестованными микробиологическими лабораториями вне зависимости от их ведомственной подчиненности, обеспечивает своевременное принятие мер при нарушении допустимых уровней загрязнения м.о. воздуха производственной среды.

Литература

- 1. Гигиеническая оценка микробного загрязнения воздуха рабочей зоны в производстве хлебопекарных дрожжей / В. А. Филонюк [и др.] // Здоровье и окружающая среда: сб. материалов междунар. науч.-практ. конф., Минск, 15-16 нояб. 2018 г.: в 2 т. / Мво здравоохранения Респ. Беларусь, Науч.-практ. центр гигиены; гл. ред. С. И. Сычик. Минск: РНМБ, 2018. Т. 1. С. 127–130.
- 2. Качество воды. Требования к установлению характеристик выполнения количественных микробиологических методов : ISO 13843:2017. Введ. 27.06.17. Минск : БелГИСС, 2017. 68 с.
- 3. Коломиец, Э. И., Ракецкая О. А. Состояние и перспективы развития биотехнологии в Республике Беларусь / Э. И. Коломиец, О. А. Ракецкая // Микробные биотехнологии: фундаментальные и прикладные аспекты : сб. науч. тр. / НАН Беларуси [и

- др.]. Минск, 2013. T.5: посвящен 85-летию со дня основания Национальной академии наук Беларуси. С. 3-9.
- 4. Методики выполнения измерений : ГОСТ Р 8.563-96 ГСИ. Введ. 02.05.96. М. : Госстандарт России, 2002.-20 с.
- 5. Микробиология пищевых продуктов и кормов для животных. Руководство по оценке неопределенности измерения для количественных определений : ISO/TS 19036:2006. Введ. 01.02.06. Минск : БелГИСС, 2006. 36 с.
- 6. Микробиология пищевых продуктов и кормов для животных. Общие требования к выполнению микробиологических исследований : СТБ ISO 7218-2010. Введ. 01.01.11. Минск : БелГИСС, 2010.-66 с.
- 7. Обоснование предельно допустимых концентраций и методик выполнения измерений содержания в воздухе рабочей зоны микроорганизмов-продуцентов и микробных препаратов на их основе : инструкция по применению № 009-1015 / В. А. Филонюк [и др.] / М-во здравоохранения Респ. Беларусь. Минск, 2015. 30 с.
- 8. Точность (правильность и прецизионность) методов и результатов измерений : СТБ ИСО 5725-(1-6)-2002 : в 6 ч. Ч.2 Введ. 01.09.03. Минск : Межгос. совет по стандартизации, метрологии и сертификации, 2003. —68 с.
- 9. Филонюк, В. А. Методология гигиенического регламентирования микробных препаратов и разработки методик выполнения измерений содержания микроорганизмов в воздухе рабочей зоны / В. А. Филонюк, В. В. Шевляков, Н. В. Дудчик ; М-во здравоохранения Респ. Беларусь, Респ. унитар. предприятие «Науч.-практ. центр гигиены». Минск : БелНИИТ «Транстехника», 2018. 264 с.
- 10. Water quality The variability of test results and uncertainty of measurement of microbiological enumeration methods: ISO 29201: 2012(R2017) // International Organization for Standardization. Published: 01-01-2012. Mode of access: https://infostore.saiglobal.com/enus/Standards/ISO-29201-2012-R2017-599671_SAIG_ISO_ISO_1373114/. Date of access: 20.01.2018.