

Разработка способа определения концентраций токсичных химических элементов в модельных средах, имитирующих пищевую продукцию, контактирующую с биоразлагаемой упаковкой

Докладчик: Дребенкова И.В., с.н.с., к.т.н.

Содокладчик: Кузовкова А.А., зав. лаб., к.б.н.

Республиканское унитарное предприятие «Научно-практический центр гигиены», г. Минск, Республика Беларусь

В странах Евразийского экономического союза действует технический регламент

ТР ТС 005/2011 «О безопасности упаковки», который регламентирует уровни миграции токсичных элементов из упаковки в модельные среды, имитирующие пищевые продукты, однако в нем нет никаких упоминаний о биоразлагаемой упаковке, соответственно, в актуализированном по состоянию на 10.11.2020 перечне стандартов к TP TC 005/2011 нет методов оценки безопасности.

Разработка методики измерений массовых концентраций токсичных элементов, потенциально способных мигрировать из упаковки в пищевые продукты проводится в рамках задания 04.06 «Разработать и научно обосновать метод гигиенической оценки упаковки и материалов, контактирующих с пищевой продукцией, включая биоразлагаемые»

Государственной научно-технической программы «Научно-техническое обеспечение качества и доступности медицинских услуг»

Цель представленных исследований - разработка способа определения концентраций токсичных химических элементов в модельных средах, имитирующих пищевую продукцию, контактирующую с биоразлагаемой упаковкой.

Для достижения поставленной цели установлен спектр токсичных элементов, потенциально способных мигрировать из упаковки в пищевые продукты: свинец (Pb), цинк (Zn), мышьяк (As), хром (Cr), кадмий (Cd), титан (Ti), алюминий (Al), барий (Ba), медь (Cu), железо (Fe), олово (Sn), никель (Ni), молибден (Mo), селен (Se).

- **Метод исследования** атомно-эмиссионная спектрометрия с индуктивно-связанной плазмой (АЭС-ИСП).
- Оборудование атомно-эмиссионный спектрометр с индуктивно-связанной плазмой Ultima 2 (Horiba Jobin Yvon, Франция), оснащенный пневматическим и ультразвуковым (модель U-5000AT) распылителями для превращения пробы в аэрозоль.

Проведена оптимизация условий проведения АЭС-ИСП анализа содержания токсичных элементов в модельных средах, имитирующих пищевую продукцию, контактирующую с упаковкой, в том числе биоразлагаемой.

Условия работы атомно-эмиссионного спектрометра с индуктивно-связанной плазмой Ultima-2 Horiba JY:

Мощность генератора — 1000–1100 Вт;

Скорость потока газа плазмы — 12 дм³/мин;

Скорость потока газа в оболочке — $0.2 \, \text{дм}^3/\text{мин}$;

Скорость потока вспомогательного газа — 0 дм³/мин;

Скорость распыления — 0,8 дм³/мин при 2,82 бар;

Скорость подачи пробы — 1,2 см³/мин;

Длины волн детекции, нм: As - 189,042; Cd - 214,438; Pb - 220,353; Se - 196,026;

Zn - 213,856; Cr - 267,716; Cu - 324,754; Ti - 334,941;

Sn - 189,930; Mo - 202,030; Ni - 221,647; Fe - 259,940;

Al - 396,152; Ba - 233,527.

Объекты исследований:

Водные модельные среды (холостые пробы):

- 1)пробы дистиллированной воды;
- 2) пробы деионизованной воды.

Модельные среды на основе органических кислот (холостые пробы):

- 1) пробы 3 % молочной кислоты;
- 2) пробы 3 % уксусной кислоты;
- 3) пробы 2 % лимонной кислоты.

Предмет исследований — пределы определения (с_{lim}) элементов Pb, Zn, As, Cr, Cd, Ti, Al, Ba, Cu, Fe, Sn, Ni, Mo, Se в модельных средах, полученные с использованием атомно-эмиссионного спектрометра с индуктивносвязанной плазмой Ultima-2 Horiba JY, оснащенного пневматическим и ультразвуковым распылителями.

Предел определения — $10~{\rm S}_{\rm o,}$ где ${\rm S}_{\rm o}$ — стандартное квадратичное отклонение при измерении сигнала холостого опыта.

Чувствительность методики — предел определения аналита, полученный с использованием установленных условий анализа.

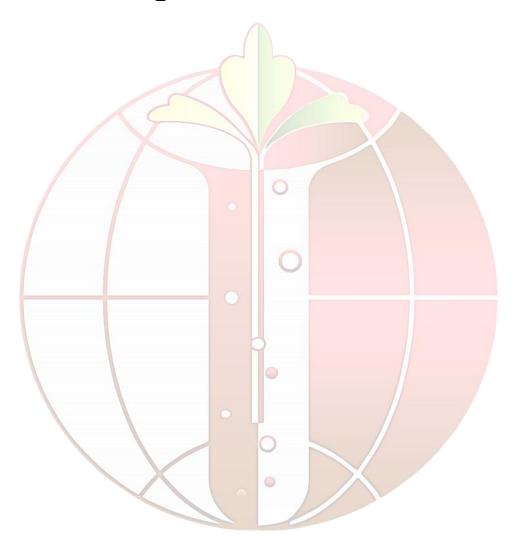
Полученные результаты исследований представлены в таблицах.

Пределы определения (clim, $10~S_o$) элементов в водных модельных средах с использованием атомно-эмиссионного спектрометра с индуктивно-связанной плазмой

	Пределы определения $c_{ m lim}$, $10~{ m S_o}$, мг/дм 3						
Эле-	Пневматически	й распылитель	Ультразвуковой распылитель				
мент	деионизованная вода	дистиллированная вода	деионизованная вода	дистиллированная вода			
As	0,0256	0,0383	0,0035	0,0034			
Cd	0,0021	0,0014	0,0005	0,0010			
Pb	0,0388	0,0347	0,0024	0,0031			
Se	0,0592	0,0588	0,0035	0,0044			
Zn	0,0014	0,0137	0,0003	0,0027			
Cr	0,0051	0,0150	0,0003	0,0003			
Cu	0,0118	0,0621	0,0007	0,0005			
Ti	0,0032	0,0021	0,0009	0,0016			
Sn	0,0544	0,0947	0,0066	0,0057			
Mo	0,0130	0,0122	0,0017	0,0019			
Ni	0,0089	0,0079	0,0005	0,0008			
Fe	0,0043	0,0032	0,0004	0,0003			
Al	0,0336	0,0134	0,0014	0,0023			
Ba	0,0012	0,0062	0,0005	0,0005			

Пределы определения (clim, $10~S_o$) элементов в модельных средах на основе органических кислот с использованием атомно-эмиссионного спектрометра с индуктивно-связанной плазмой

	Пределы определения c_{lim} , $10~S_o$, мг/дм 3						
Эле- мент	Пневматический распылитель		Ультразвуковой распылитель				
	3% молочная кислота	3% уксусная кислота	2% лимонная кислота	3% молочная кислота	3% уксусная кислота	2% лимонная кислота	
As	0,0291	0,0408	0,0459	0,0476	0,0055	0,1188	
Cd	0,0010	0,0017	0,0012	0,0010	0,0008	0,0015	
Pb	0,0230	0,0217	0,0245	0,0066	0,0075	0,0162	
Se	0,0379	0,0484	0,0465	0,0263	0,0083	0,0210	
Zn	0,0017	0,0048	0,0064	0,0006	0,0047	0,0015	
Cr	0,0017	0,0024	0,0020	0,0015	0,0008	0,0005	
Cu	0,0076	0,0076	0,0048	0,0009	0,0039	0,0028	
Ti	0,0050	0,0021	0,0090	0,0031	0,0005	0,0054	
Sn	0,1030	0,1100	0,0899	0,0529	0,0068	0,0820	
Mo	0,0054	0,0072	0,0053	0,0014	0,0005	0,0037	
Ni	0,0055	0,0031	0,0034	0,0009	0,0008	0,0016	
Fe	0,0057	0,0021	0,0219	0,0016	0,0006	0,0005	
Al	0,0179	0,0309	0,1320	0,0011	0,0008	0,0018	
Ba	0,0008	0,0013	0,0013	0,0004	0,0003	0,0005	



Выводы

- Применение ультразвукового распылителя для превращения пробы в аэрозоль является действенным методическим подходом к повышению чувствительности методики определения концентраций большинства токсичных элементов (понижению предела их определения) в водных модельных средах и модельных средах на основе органических кислот с использованием АЭС-ИСП.
- На основании результатов проведенных исследований для атомно-эмиссионного спектрометра с индуктивно-связанной плазмой Ultima-2 Horiba JY разработан «Способ определения концентраций токсичных химических элементов в модельных средах, имитирующих пищевую продукцию, контактирующую с упаковкой, включая биоразлагаемую».
- Способ основан на анализе модельных сред, имитирующих пищевые продукты, контактирующие с биоразлагаемой упаковкой, атомно-эмиссионным методом путем измерения интенсивности излучения атомов определяемых токсичных химических элементов, возникающего при распылении анализируемой пробы в аргоновую плазму, индуктивно возбуждаемую радиочастотным электромагнитным полем.
- Данный способ позволяет проводить количественное определение концентраций токсичных химических элементов в модельных средах, имитирующих пищевые продукты, контактирующие с биоразлагаемой упаковкой

Благодарю за внимание!

